
CSEP504:

Advanced topics in software systems

• Tonight: 2nd of three lectures on software tools and

environments – a few tools in some more depth

• February 22 (Reid Holmes): Future directions and

areas for improvement – rationale behind the drive

towards integration

• Capturing latent knowledge

• Task specificity / awareness

• Supporting collaborative development

• The plan for the final two lectures

David Notkin  Winter 2010  CSEP504 Lecture 5

UW CSE P504 1

Announcements

• The second state-of-the-research paper can be on

any approved topic in software engineering research

– That is, it needn‘t be focused on one of the core

topics in the course

– Everything else stays the same (due dates,

groups, commenting, etc.)

• Comment away on the first state-of-the-research

papers!

UW CSE P504 2

Announcements

• March 1:

– Report from India (Microsoft Research,

discussions about starting a software engineering

center, etc.) [~30 minutes]

– Different ways to evaluate and assess software

engineering research [~60-90 minutes]

• March 8: SE economics (I will post readings soon)

UW CSE P504 3

Languages and tools

• In preparing for this lecture, one possible topic Reid

and I discussed was ―languages as tools‖

– The premise is that different programming

languages support different development

methodologies and have particular strengths

– Another lightly related question is how to decide

between placing something in a language or in a

tool: as an example, consider lint vs. types

• But no deep discussion tonight

UW CSE P504 4

Tonight

• Concolic testing – in depth

• Continuous testing – not in depth

• Carving from system tests – even less in depth

• Speculation – discussion about the idea

• LSDiff – in depth

• Reflexion models – in some depth

UW CSE P504 5

Testing
Not full-fledged testing lectures!

• What questions

should testing –

broadly construed –

answer about this

itsy-bitsy program?

• What criteria should

we use to assess

different approaches

to testing it?

if (x > y) {

x = x + y;

y = x – y;

x = x – y;

if (x > y)

assert(false)

}

UW CSE P504 6

Example from

Visser, Pasareanu & Mehlitz

Control flow graph (CFG)

UW CSE P504 7

x >? y

x = x + y

y = x – y

x = x – y

x >? y

assert(false) end

Can this

statement

ever be

executed?

Edge coverage

UW CSE P504 8

x >? y

x = x + y

y = x – y

x = x – y

x >? y

assert(false) end

[x=0;y=1]

[x=1;y=0]

Edge ever

taken?

[x=1;y=1]

[x=1;y=0]

[x=0;y=1]

Symbolic execution [x=;y=]

UW CSE P504 9

x >? y

x = x + y

y = x – y

x = x – y

x >? y

assert(false) end

[ <= ]

[x=+;y=]

[x=+;y=]

[x=;y=]

[x=;y=]
>

ever

here?

Symbolic execution

UW CSE P504 10

x >? y

x = x + y

y = x – y

x = x – y

x >? y

assert(false) end

[ <= ]

[x=+;y=]

[x=+;y=]

[x=;y=]

[x=;y=]

[ > ]

 < 

here

if (x > y) {

x = x + y;

y = x – y;

x = x – y;

if (x > y)

assert(false)

}

What‘s really going on?

• Create a symbolic

execution tree

• Explicitly track path

conditions

• Solve path conditions

– ―how do you get to

this point in the

execution tree?‖ – to

defines test inputs

• Goal: define test

inputs that reach all

reachable statements

UW CSE P504 11

[true]
x = ,y = 

[true]
 >? 

[ > ]
x =  + 

[ > ]
x=;y=

[ > ]
 >? 

[> & >]
“false”

[> &  <=]
end

[ <=]
end

int double (int v){

return 2*v;

}

void testme (int x, int y){

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;

}}}

Another example (Sen and Agha)

UW CSE P504 12

[true]
x = ,y = 

[true]
z = 2 * 

[true]
2 *  ==? 

[2 *  = ]
 >?  + 10

[2 *  =  &  >  + 10]
error

[2 *  =  &  <=  + 10]
end

[2 *  != ]
end

Error: possible by solving equations

[2 *  =  &  >  + 10]

 [2 *  >  + 10]

 [ > 10]

 [ > 10 & 2 *  = ]

UW CSE P504 13

Way cool – we‘re done!

• First example can‘t reach assert(false), and it‘s

easy to reach end via both possible paths

• Second example: can reach error and end via both

possible paths

• Well, what if we can‘t solve the path conditions?

– Some arithmetic, some recursion, some loops,

some pointer expressions, etc.

– We‘ll see an example

• What if we want specific test cases?

UW CSE P504 14

Concolic testing: Sen et al.

• Basically, combine concrete and symbolic execution

• More precisely…

– Generate a random concrete input

– Execute the program on that input both concretely
and symbolically simultaneously

– Follow the concrete execution and maintain the
path conditions along with the corresponding
symbolic execution

– Use the path conditions collected by this guided
process to constrain the generation of inputs for
the next iteration

– Repeat until test inputs are produced to exercise
all feasible paths

UW CSE P504 15

int double (int v){

return 2*v;

}

void testme (int x, int y){

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;

}}}

2nd example redux

1st iteration x=22, y=7

UW CSE P504 16

[true]
x =  = 22, y = 7 = 

[true]
z = 14 = 2 * 

[true]
2 *  ==? 
14 ==? 22

[2 *  = ]
…

[2 *  != ]
end

• Now solve

2 *  =  to force

the other branch

• x = 1; y = 2

is one solution

int double (int v){

return 2*v;

}

void testme (int x, int y){

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;

}}}

2nd example

2nd iteration x=1, y=2

UW CSE P504 17

[true]
x =  = 1,y =  = 2

[true]
z = 2 *  = 4

[true]
2 *  ==? 

2 ==? 2

[2 *  = ]
 >?  + 10
1 >? 2 + 10

[2 *  =  &  >  + 10] [2 *  =  &
 <=  + 10]

[2 *  != ]
…

• Now solve

2 *  =  &

 <=  + 10

to force the

other branch

• x = 30;

y = 15 is

one solution

int double (int v){

return 2*v;

}

void testme (int x, int y){

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;

}}}

2nd example

3nd iteration x=30, y=15

UW CSE P504 18

[true]
x =  = 30,y =  = 15

[true]
z = 2 *  = 30

[true]

[2 *  = ]
 >?  + 10

30 >? 15 + 10

[2 *  =  &  >  + 10]
[30 = 30 & 30 > 25]

error

[2 *  =  &  <=  +
10]

[2 *  != ]
…

• Now solve

2 *  =  &

 <=  + 10

to force the

other branch

• x = 30; y =

15 is one

solution

Three concrete test cases

x y

22 7 Takes first else

2 1 Takes first then and second else

30 15 Takes first and second then

UW CSE P504 19

int double (int v){ return 2*v;}

void testme (int x, int y){

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concolic testing example: P. Sağlam

• Random seed

– x = -3; y = 7

• Concrete

– z = 9

• Symbolic

– z = x3+3x2+9

• Take then branch

with constraint
x3+3x2+9 != y

UW CSE P504 20

void test_me(int x,int y){

z = x*x*x + 3*x*x + 9;

if(z != y){

printf(“Good branch”);

} else {

printf(“Bad branch”);

abort();

}

}

• Take else branch

with constraint
x3+3x2+9 = y

Concolic testing example: P. Sağlam

UW CSE P504 21

void test_me(int x,int y){

z = x*x*x + 3*x*x + 9;

if(z != y){

printf(“Good branch”);

} else {

printf(“Bad branch”);

abort();

}

}

• Solving is hard for
x3+3x2+9 = y

• So use z‘s concrete value,

which is currently 9, and

continue concretely

• 9 != 7 so then is good

• Symbolically solve 9 = y

for else clause

• Execute next run with
x = -3; y = 9

so else is bad

• When symbolic expression

becomes unmanageable

(e.g., non-linear) replace it

by concrete value

Concolic testing example: P. Sağlam

• Random

– Random memory

graph reachable from
p

– Random value for x

– Probability of reaching
abort() is extremely

low

• (Why is this a

somewhat misleading

motivation?)

UW CSE P504 22

typedef struct cell {

int v;

struct cell *next;

} cell;

int f(int v) {

return 2*v + 1;

}

int testme(cell *p, int x) {

if (x > 0)

if (p != NULL)

if (f(x) == p->v)

if (p->next == p)

abort();

return 0;

}

Let‘s try it

Concrete Symbolic Constraints

23

typedef struct cell {

int v;

struct cell *next;

} cell;

int f(int v) {

return 2*v + 1;

}

int testme(cell *p, int x) {

if (x > 0)

if (p != NULL)

if (f(x) == p->v)

if (p->next == p)

abort();

return 0;

}

p=NULL;

x=236

UW CSE P504

Let‘s try it

Concrete Symbolic Constraints

24

typedef struct cell {

int v;

struct cell *next;

} cell;

int f(int v) {

return 2*v + 1;

}

int testme(cell *p, int x) {

if (x > 0)

if (p != NULL)

if (f(x) == p->v)

if (p->next == p)

abort();

return 0;

}

p=[634,NULL];

x=236

UW CSE P504

Let‘s try it

Concrete Symbolic Constraints

25

typedef struct cell {

int v;

struct cell *next;

} cell;

int f(int v) {

return 2*v + 1;

}

int testme(cell *p, int x) {

if (x > 0)

if (p != NULL)

if (f(x) == p->v)

if (p->next == p)

abort();

return 0;

}

p=[3,p];

x=1

UW CSE P504

Let‘s try it

Concrete Symbolic Constraints

26

typedef struct cell {

int v;

struct cell *next;

} cell;

int f(int v) {

return 2*v + 1;

}

int testme(cell *p, int x) {

if (x > 0)

if (p != NULL)

if (f(x) == p->v)

if (p->next == p)

abort();

return 0;

}
UW CSE P504

Concolic: status

• The jury is still out on concolic testing – but it surely

has potential

• There are many papers on the general topic

• Here‘s one that is somewhat high-level Microsoft-

oriented

– Godefroid et al. Automating Software Testing

Using Program Analysis IEEE Software (Sep/Oct

2008)

– They tend to call the approach DART – Dynamic

Automated Random Testing

UW CSE P504 27

http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ieeesw2008.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ieeesw2008.pdf

DART

UW CSE P504 28

From P. Godefroid

My take

• The real story is the combination of symbolic evaluation,
model checking, automated theorem proving, concrete
testing, etc.

• These are being used and combined in ways that were
previously not considered and/or were previously
infeasible

• One other point: few if any of these systems actually help
produce test suites with oracles – they rather help
produce sets of test inputs that provide some kind of
structural coverage

• This is fine, but it is not the full testing story – making sure
the program computes what is wanted is also crucial

UW CSE P504 29

An aside: sources of unsoundness

• Matt Dwyer and colleagues have observed that in

any form of analyzing a program (including analysis,

testing, proving, …) there is a degree of

unsoundness

• How do we know that

– every desired property (correctness, performance,

reliability, security, usability, …) is achieved in

– every possible execution?

• We don‘t – so we need to know what we know, and

what we don‘t know

UW CSE P504 30

Behaviors

Sample across executions

UW CSE P504 31

Behaviors

Deadlock

Freedom from races

Data structure invariants

Sample across requirements

UW CSE P504 32

Continuous testing: Ernst et al.

• Run regression tests on every keystroke/save,

providing rapid feedback about test failures as source

code is edited

• Objectives: reduce the time and energy required to

keep code well-tested, and prevent regression errors

from persisting uncaught for long periods of time

UW CSE P504 33

Key results include

• Developers using continuous testing were three times

more likely to complete the task before the deadline

than those without (in a controlled experiment)

• Most participants found continuous testing to be

useful and believed that it helped them write better

code faster, and 90% would recommend the tool to

others.

• Experimental supporting evidence that reducing the

time between the introduction of an error and its

discovery by a developer can lead to improvements

in overall development time.

UW CSE P504 34

Test factoring

• ―Expensive‖ tests (taking a long time to run, most

often) are hard to handle ―continuously‖ when they

begin to fail

• Test factoring, given a large test, produces one or

more smaller tests

• Each of these smaller tests is unlikely to fail unless

the large test fails, and likely to regress (start to fail)

when the large test regresses due to a particular kind

of program change.

UW CSE P504 35

More details…

• Clever engineering, clever evaluation, and more

• http://www.cs.washington.edu/homes/mernst/research/#Testing

(including continuous testing – old page at MIT)

UW CSE P504 36

http://www.cs.washington.edu/homes/mernst/research/
http://www.cs.washington.edu/homes/mernst/research/
http://groups.csail.mit.edu/pag/continuoustesting/

Carving differential unit test cases from system

test cases: Elbaum et al. FSE TSE

• Unit test cases are focused and efficient

• System tests are effective at exercising complex usage
patterns

• Differential unit tests (DUT) are a hybrid of unit and
system tests that exploits their strengths

• DUTs are generated by carving the system components,
while executing a system test case, that influence the
behavior of the target unit, and then re-assembling those
components so that the unit can be exercised as it was by
the system test

• Architecture, framework, implementation and empirical
assessment of carving and replaying DUTs on three
software artifacts

UW CSE P504 37

http://doi.acm.org/10.1145/1181775.1181806
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.103

From FSE paper

UW CSE P504 38

―The Carving project is now a part of the new, bigger, and more

ambitious T2T: Test-to-Test Transformation Project‖

http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay

Speculation: again

• Continuous testing – in essence, trying to keep

everything as up-to-date as possible

– Using cycles for quality (not primarily for

performance)

• Same two speculation slides, same motivation

• What if we had infinite cycles for quality and could

provide up-to-date information about a set of possible

actions?

– This would also provide instantaneous transition to

a new program state once an action was selected

• Discussion

UW CSE P504 39

Speculation: ongoing research @ UW

UW CSE P504 40

Speculation over merging?

UW CSE P504 41

LSDiff (M. Kim et al.):

Help answer questions like …

Did Steve implement

the intended changes

correctly?

There‘s a merge

conflict. What did

Sally change?

Check-in comment

(revision 429 of carol open source project)

―Common methods go in an abstract class.

Easier to extend/maintain/fix‖

What changed?

UW CSE P504 42

http://users.ece.utexas.edu/~miryung/

What changed?

File Name Status #Lines

DummyRegistry New 20

AbsRegistry New 133

JRMPRegistry Modified 123

JeremieRegistry Modified 52

JacORBCosNaming Modified 133

IIOPCosNaming Modified 50

CmiRegistry Modified 39

NameService Modified 197

NameServiceManager Modified 15

Changed code: 9 files, 723 lines

Was it really an
extract superclass
refactoring? Was

any part of the
refactoring

missed? Did Steve
make any other

changes?

UW CSE P504 43

File Name Status #Lines

DummyRegistry New 20

AbsRegistry New 133

JRMPRegistry Modified 123

JeremieRegistry Modified 52

JacORBCosNaming Modified 133

IIOPCosNaming Modified 50

CmiRegistry Modified 39

NameService Modified 197

NameServiceManager Modified 15

Changed code: 9 files, 723 lines

Try diff

UW CSE P504 44

File Name Status #Lines

DummyRegistry New 20

AbsRegistry New 133

JRMPRegistry Modified 123

JeremieRegistry Modified 52

JacORBCosNaming Modified 133

IIOPCosNaming Modified 50

CmiRegistry Modified 39

NameService Modified 197

NameServiceManager Modified 15

Changed code: 9 files, 723 lines

Try diff

- public class CmiRegistry implements NameService {

+ public class CmiRegistry extends AbsRegistry implements NameService {

- private int port = ...

- private String host = null

- public void setPort (int p) {

- if (TraceCarol. isDebug()) { ...

- }

- }

- public int getPort() {

- return port;

- }

- public void setHost(String host) { ...

UW CSE P504 45

Related diff-like approaches

• Syntactic Diff (Cdiff), Semantic Diff, Jdiff, BMAT,

Eclipse diff, UMLdiff, Change Distiller, …

• They individually compare code elements at specific

granularities using various similarity measures

– Code elements may be lines, abstract syntax

trees, control flow graphs, etc.

– Similarity is usually based on names and structure

• These tools provide information that is accurate and

useful but not well-suited to helping engineers and

managers answer the kinds of questions we want

UW CSE P504 46

Use systematic change

• Existing diff-based tools do not exploit the fact that

programmers often make high-level changes in part

by systematically applying lower-level changes

• Systematic changes are widespread; examples

include

– Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

– API update [Chow & Notkin 96, Henkel & Diwan 05, Dig &

Johnson 05...]

– Crosscutting concerns [Kiczales et. al. 97, Tarr et. al.

99, Griswold 01...]

– Consistent updates on code clones [Miller & Myers

02, Toomim et. al. 04, Kim et. al. 05, …]

UW CSE P504 47

Limitations of diff-based approaches

• These approaches do not group related changes with

respect to a high-level change – but rather by

structural program units such as files

• In part because of this first limitation, they do not

make it easy to identify incomplete or missed parts of

high-level changes

• They leave it to the programmer to discover any

useful contextual information surrounding the low-

level changes

• In other words, these approaches are program-

centric but not change-centric

UW CSE P504 48

Ex: No change-based grouping

• The programmer must determine that the same

changes have been made in these three related

classes – if they even choose to think about this

T
o
y
o
t
a
.
j
a
v
a + ...

- start();

+ begin();

G
M
.
j
a
v
a + ...

- start();

+ begin();

B
M
W
.
j
a
v
a + ...

- start();

+ begin();

UW CSE P504 49

Ex: Hard to see missed changed

• The programmer must decide to look for a missing or

inconsistent change – there is no help from the tool

T
o
y
o
t
a
.
j
a
v
a + ...

- start();

+ begin();

G
M
.
j
a
v
a + ...

- start();

B
M
W
.
j
a
v
a + ...

- start();

+ begin();

UW CSE P504 50

Ex: Lack of contextual information

• Three subclasses of a class changed in the same

way would not be identified by the tools themselves

class Toyota
extends Car

+ run(){

+ ...

+ }

class GM
extends Car

+ run(){

+ ...

+ }

class BMW
extends Car

+ run(){

+ ...

+ }

class Car

...

run () {

...

}

UW CSE P504 51

The Logical Structural Diff Approach

• LSDiff computes structural differences between two

versions using logic rules and facts

• Each rule represents a group of transformations that

share similar structural characteristics – a systematic

change

• Our inference algorithm automatically discovers

these rules

UW CSE P504 52

Conciseness

T
o
y
o
t
a
.
j
a
v
a + ...

- start();

+ begin();

G
M
.
j
a
v
a + ...

- start();

+ begin();

B
M
W
.
j
a
v
a + ...

- start();

+ begin();

LSD

Rule

UW CSE P504 53

Explicit exceptions

T
o
y
o
t
a
.
j
a
v
a + ...

- start();

+ begin();

G
M
.
j
a
v
a + ...

- start();

B
M
W
.
j
a
v
a + ...

- start();

+ begin();LSD

Rule
√ √X

UW CSE P504 54

Additional context

class Toyota
extends Car

+ run(){

+ ...

+ }

class GM
extends Car

+ run(){

+ ...

+ }

class BMW
extends Car

+ run(){

+ ...

+ }

class Car

...

run () {

...

}

LSD

Rule

UW CSE P504 55

Program representation

• We abstract Java

programs at the level of

code elements and

structural dependencies

• Predicates represent

package, type, method,

field, sub-typing,

overriding, method

calls, field accesses

and containment

relationships

 package

 type

 method

 field

 return

 fieldoftype

 typeintype

 accesses

 calls

 subtype

 inheritedfield

 inheritedmethod

UW CSE P504 56

Fact-based representation

• Analyze a program‘s abstract syntax tree and return

a fact-base of these predicates (using JQuery [Jensen

& DeVolder 03])

• Repeat for the modified program

type(“Bus”,..)

method(“Bus.start”,”start”,”Bus”)

access(“Key.on”,”Bus.start”)

method(“Key.out”,”out”,”Key”)...

type(“Bus”,..)

method(“Bus.start”,”start”,”Bus”)

calls(“Bus.start”,”log”)

method(“Key.output”,”output”,”Key”)...

Old program

FBo

past_

New program

FBn

current_UW CSE P504 57

Compute FB = FBo - FBn

deleted_access(“Key.on”,”Bus.start”)

added_calls(“Bus.start”,”log”)

deleted_method(“Key.out”,”out”,”Key”)

added_method(“Key.output”,”output”,”Key”)

...

UW CSE P504 58

LSDiff Rule Quantification

• Rules represent systematic structural differences that

relates groups of facts from the three fact-bases –

FBo, FBn, FB

• Universally quantified variables allow rules to

represent a group of similar facts at once

– For example, mt method(m,”setHost”,t)

refers to all methods named setHost in all types

– Ex: ∀t subtype(“Service”, t)

– Ex: ∀m calls(m, “SQL.exec”)

UW CSE P504 59

LSD Rules

• Rules are Horn clauses where a conjunction of logic

literals implies a single consequent literal

• ∀m ∀t method(m, “setHost”, t) ∧
subtype(“Service”, t)

⇒ calls(m, “SQL.exec”)

UW CSE P504 60

Rules across versions

• ∀m ∀t past_method(m, “setHost”, t) ∧
past_subtype(“Service”, t)

⇒ deleted_calls(m, “SQL.exec”)

UW CSE P504 61

Rules note exceptions

• ∀m ∀t past_method(m, “setHost”, t) ∧
past_subtype(“Service”, t)

⇒ deleted_calls(m, “SQL.exec”)

except t=“NameSvc”,

m=”NameSvc.setHost”

• ―All setHost methods in Service‘s subclasses in the

old version deleted calls to SQL.exec except the

setHost method in the NameSvc class.‖

• A parameter defines when exceptions are found and

reported

UW CSE P504 62

Algorithm Overview

1. Extract logic facts from

programs and compute

fact-level differences

2. Learn rules using a

customized inductive

logic programming

algorithm

3. Select a subset of rules

and then remove the

facts in ΔFB using the

learned rules

Po

Pn

logic rules
and facts

that explain
structural

differences

UW CSE P504 63

Learn rules

• Inductive logic programming with a bounded depth search based on

beam search heuristics

• Input parameters determine the validity of a rule

– m: the minimum # of facts a rule must match – enough evidence for

a rule?

– a: the minimum accuracy of a rule – enough evidence for an

exception?

– k: the maximum # of literals in an antecedent

– β: the window size for beam search

• A sequential covering algorithm that iteratively finds rules and removes

covered facts

• Generate rules starting with an empty antecedent and adding literals

(e.g., from general to specific)

• Learn partially grounded rules by substituting variables of ungrounded

rules with constants

UW CSE P504 64

Learn rules

R := {} // a set of ungrounded rules

L := {} // a set of valid learned rules

D := reduced ΔFB using default winnowing rules

for each antecedent size, i = 0...k :

R := extend all rules in R by adding

all possible literals

for each ungrounded rule, r:

for each possible grounded rule g of r:

if (g is valid) L:= L ∪ g

R := select the best β rules in R

D := D - { facts covered by L }

UW CSE P504 65

Select rules

• Some rules explain the same set of facts in FB

• So we use a set cover algorithm to select a subset of

learned rules

• Return the selected rules, remove the facts that those

rules cover, and return any remaining uncovered
facts in ∆FB

UW CSE P504 66

LSD Example

• To prevent an injection attack, a programmer
replaced all calls to SQL.exec to SafeSQL.exec

• LSD infers the following rule

– deleted_calls(m,“SQL.exec”) 

added_calls(m,“SafeSQL.exec”)

• And another rule we’ve seen before, suggesting a

deletion was not done

– past_subtype(“Service”, t) ∧
past_method(m, “setHost”, t) ⇒

deleted calls(m, “SQL.exec”)

except t=“NameSvc”

UW CSE P504 67

Quantitative evaluation

• How often do individual changes form systematic

change patterns?

– Measure coverage, # of facts in ∆FB matched by

inferred rules

• How concisely does LSD describe structural

differences in comparison to existing differencing

approach at the same abstraction level?

– Measure conciseness, ∆FB / (# rules + # facts)

• How much contextual information does LSD find from

unchanged code fragments?

– Measure the number of facts mentioned by rules

but are not contained in ∆FB
UW CSE P504 68

FBo/FBn ∆FB Rule Fact
Cover-

age

Concise-

ness

Context

facts

carol
10 revisions

3080

~

10746

15

~

1812

1

~

36

3

~

71

59

~

98%

2.3

~

27.5

0

~

19

dnsjava
29 releases

3109

~

7204

4

~

1500

0

~

36

2

~

201

0

~

98%

1.0

~

36.1

0

~

91

LSdiff
10 versions

8315

~

9042

2

~

396

0

~

6

2

~

54

0

~

97%

1.0

~

28.9

0

~

12

a=0.75, m=3, k=2, β=100Quantitative evaluation

UW CSE P504 69

FBo/FBn ∆FB Rule Fact
Cover-

age

Concise-

ness

Context

facts

carol
10 revisions

3080

~

10746

15

~

1812

1

~

36

3

~

71

59

~

98%

2.3

~

27.5

0

~

19

dnsjava
29 releases

3109

~

7204

4

~

1500

0

~

36

2

~

201

0

~

98%

1.0

~

36.1

0

~

91

LSdiff
10 versions

8315

~

9042

2

~

396

0

~

6

2

~

54

0

~

97%

1.0

~

28.9

0

~

12

a=0.75, m=3, k=2, β=100Quantitative evaluation

On average, 75% coverage,

9.3 times conciseness improvement,

9.7 additional contextual facts

UW CSE P504 70

Textual Delta vs. LSD
a=0.75, m=3, k=2, β=100

Textual Delta LSD

Changed

Files

Changed

Lines
Hunks

%

Touched
Rule Fact

carol
10 revisions

1 ~

35

67 ~

4313

9 ~

132

1 ~

19

1 ~

36

3 ~

71

dnsjava
29 releases

1 ~

117

5 ~

15915

1 ~

344

2 ~

100

0 ~

36

2 ~

201

LSdiff
10 versions

2 ~

11

9 ~

747

2 ~

39

2 ~

9

0 ~

6

2 ~

54
UW CSE P504 71

Textual Delta vs. LSD
a=0.75, m=3, k=2, β=100

Textual Delta LSD

Changed

Files

Changed

Lines
Hunks

%

Touched
Rule Fact

carol
10 revisions

1 ~

35

67 ~

4313

9 ~

132

1 ~

19

1 ~

36

3 ~

71

dnsjava
29 releases

1 ~

117

5 ~

15915

1 ~

344

2 ~

100

0 ~

36

2 ~

201

LSdiff
10 versions

2 ~

11

9 ~

747

2 ~

39

2 ~

9

0 ~

6

2 ~

54

When an average text delta

consists of 997 lines across 16

files, LSD outputs an average of 7

rules and 27 facts

UW CSE P504 72

Focus group: e-commerce company

• Pre-screener survey

• Participants: five professional software engineers

– industry experience ranging from six to over 30

years

– use diff and diff-based version control system daily

– review code changes daily except one who did

weekly

• One hour structured discussion

– Professor Kim worked as the moderator

– There was also a note-taker and the discussion

was audio-taped and transcribed

UW CSE P504 73

Focus Group Hands-On Trial

http://users.ece.utexas.edu/~miryung/LSDiff/carol429-430.htm

Hand-generated html based on LSD output

UW CSE P504 74

UW CSE P504 75

Focus Group Comments (some)

• ―You can‘t infer the intent of a programmer, but this

is pretty close.‖

• ―This ‗except‘ thing is great!‖

• ―You can start with the summary of changes and dive

down to details using a tool like diff.‖

UW CSE P504 76

Focus group comments (more)

• ―This looks great for big architectural changes, but I

wonder what it would give you if you had lots of

random changes.‖

• ―This wouldn‘t be used if you were just working with

one file.‖

• ―This will look for relationships that do not exist.‖

• Unsurprising comments as we focus on recovering

systematic changes rather than heterogeneous

changes

• When the delta is small, diff should works fine

UW CSE P504 77

LSDiff plug-in for Eclipse

• And some other projects related to summarizing

changes as rules

UW CSE P504 78

http://www.cs.utexas.edu/~alexloh/lsdiff/
http://www.cs.utexas.edu/~alexloh/lsdiff/
http://www.cs.utexas.edu/~alexloh/lsdiff/
http://www.cs.utexas.edu/~alexloh/lsdiff/
http://www.cs.utexas.edu/~alexloh/lsdiff/

Languages and tools

Tools and languages

• The line between programming languages and tools

(programs that help programmers write programs) is

sometimes fuzzy

• Examples

– lint vs. type systems

UW CSE P504 79

Summarization

• e.g., software reflexion models

UW CSE P504 80

Summarization...

• A map file specifies the correspondence between

parts of the source model and parts of the high-level

model

[file=HTTCP mapTo=TCPIP]

[file=^SGML mapTo=HTML]

[function=socket mapTo=TCPIP]

[file=accept mapTo=TCPIP]

[file=cci mapTo=TCPIP]

[function=connect mapTo=TCPIP]

[file=Xm mapTo=Window]

[file=^HT mapTo=HTML]

[function=.* mapTo=GUI]

UW CSE P504 81

Summarization...

UW CSE P504 82

Summarization...

• Condense (some or all) information in terms of a

high-level view quickly

– In contrast to visualization and reverse

engineering, produce an ―approximate‖ view

– Iteration can be used to move towards a ―precise‖

view

• Some evidence that it scales effectively

• May be difficult to assess the degree of

approximation

UW CSE P504 83

Case study: A task on Excel

• A series of approximate tools were used by a

Microsoft engineer to perform an experimental

reengineering task on Excel

• The task involved the identification and extraction of

components from Excel

• Excel (then) comprised about 1.2 million lines of C

source

– About 15,000 functions spread over ~400 files

UW CSE P504 84

The process used

UW CSE P504 85

An initial Reflexion Model

• The initial Reflexion

Model computed had 15

convergences, 83,

divergences, and 4

absences

• It summarized 61% of

calls in source model

UW CSE P504 86

An iterative process

• Over a 4+ week period

• Investigate an arc

• Refine the map

– Eventually over 1000 entries

• Document exceptions

• Augment the source model

– Eventually, 119,637 interactions

UW CSE P504 87

A refined Reflexion Model

• A later Reflexion Model

summarized 99% of

131,042 call and data

interactions

• This approximate view of

approximate information

was used to reason

about, plan and

automate portions of the

task

UW CSE P504 88

Results

• Microsoft engineer judged the use of the Reflexion

Model technique successful in helping to understand

the system structure and source code

―Definitely confirmed suspicions about the structure

of Excel. Further, it allowed me to pinpoint the

deviations. It is very easy to ignore stuff that is not

interesting and thereby focus on the part of Excel that

I want to know more about.‖ — Microsoft A.B.C.

(anonymous by choice) engineer

UW CSE P504 89

Open questions

• How stable is the mapping as the source code

changes?

• What if you don‘t have a high-level model?

• How come it‘s not used much at all?

• …

UW CSE P504 90

Imitation and flattery

91UW CSE P504

Questions?

UW CSE P504 92

