CSEP504;
Advanced topics In software systems

« Tonight: 2" of three lectures on software tools and
environments — a few tools in some more depth

* February 22 (Reid Holmes): Future directions and
areas for improvement — rationale behind the drive
towards integration

« Capturing latent knowledge

« Task specificity / awareness

« Supporting collaborative development
« The plan for the final two lectures

David Notkin e Winter 2010 ® CSEP504 Lecture 5

UW CSE P504

Announcements

« The second state-of-the-research paper can be on
any approved topic in software engineering research

— That is, it needn’t be focused on one of the core
topics in the course

— Everything else stays the same (due dates,
groups, commenting, etc.)

« Comment away on the first state-of-the-research
papers!

UW CSE P504

Announcements

« March 1:

— Report from India (Microsoft Research,
discussions about starting a software engineering
center, etc.) [~30 minutes]

— Different ways to evaluate and assess software
engineering research [~60-90 minutes]

« March 8: SE economics (I will post readings soon)

UW CSE P504

Languages and tools

 In preparing for this lecture, one possible topic Reid
and | discussed was “languages as tools”

— The premise is that different programming
languages support different development
methodologies and have particular strengths

— Another lightly related question is how to decide
between placing something in a language or in a
tool: as an example, consider lint vs. types

« But no deep discussion tonight

UW CSE P504

Tonight

« Concolic testing — in depth

« Continuous testing — not in depth

« Carving from system tests — even less in depth
« Speculation — discussion about the idea

« LSDiff —in depth

« Reflexion models — in some depth

UW CSE P504

Testing
Not full-fledged testing lectures!

* What questions if (x > y) {
should testing — x =x+y;
broadly construed — Yy =x - Y;
answer about this X =X -y,
Itsy-bitsy program? if (x > y)

 What criteria should assert (false)
we use to assess }
different approaches Example from

Visser, Pasareanu & Mehlitz

to testing it?

UW CSE P504

Control flow graph (CFG)

Can this
statement
ever be
executed?

x >7

y

assert (false)

UW CSE P504

end

Edge coverage

[x=1;y=0] x >? y
[x=1;y=0] x =
[x=1;y=1] [x=0:y=1]
[x=0;y=1]
Edge ever
taken?
assert (false) end

UW CSE P504

Symbolic execution [x=a;y=p]

x >7

y

[X=0+p;y=P]
[X=0+p;y=0]
[X=B; y=al

here?

assert (false)

end

UW CSE P504

Symbolic execution

[a > PB]

[X=0+;y=p]

[X=0+B;y=0a]

[X=P;y=0]

B<a |[x=B;y=al

here

assert (false)

end

UW CSE P504

10

What's really going on?

Create a symbolic l [true] if (x > y)
execution tree X=ay=B

| assert (false)

%
I
%

|

S

Explicitly track path [true] }
conditions a>? B

Solve path conditions : :
— “how do you get to l [> B] I [<=B]
this point in the A _la l end
execution tree?” —to
defi : o >]

efines test inputs x=B:y=a
Goal: define test :

inputs that reach all [Bo‘:?lﬂ

reachable statements .

[a>B & B>a] l [a>B & B <=q] I
“false” end

UW CSE P504 11

Another example (Sen and Agha)

int double (int wv) {
XJ::fLﬁ return 2*v;
— }
void testme (int x, int y) {
[frugl z = double (y):;
e if (z == x) {
I if (x > y+10) {
[true] ERROR;
2"p ==?a }}}
[2*B =a] [2*B !=0a]
a>? B+ 10 en
[2*B =a & a>f+10] [2*B =a & a<=f + 10]

error end

VYV UJLl. 1T JUTT 12

Error: possible by solving equations

2*B =a & a>p+ 10]
2*B >pB+ 10]

B >10]

B >10&2*B =a]

UW CSE P504

13

Way cool — we're done!

* First example can’t reach assert (false), and it’s
easy to reach end via both possible paths

« Second example: can reach error and end via both
possible paths

« Well, what if we can’t solve the path conditions?

— Some arithmetic, some recursion, some loops,
some pointer expressions, etc.

— We'll see an example
« What if we want specific test cases?

UW CSE P504 14

Concolic testing: Sen et al.

« Basically, combine concrete and symbolic execution

* More precisely...
— Generate a random concrete input

— Execute the program on that input both concretely
and symbolically simultaneously

— Follow the concrete execution and maintain the
path conditions along with the corresponding
symbolic execution

— Use the path conditions collected by this guided
process to constrain the generation of inputs for
the next iteration

— Repeat until test inputs are produced to exercise
all feasible paths

UW CSE P504 15

int double (int v) {
2"d example redux return 2*v;

18t iteration x=22, y=7 }
void testme (int x, int y) {

z = double (y);

if (z == x) {
if (x > y+10) {
ERROR;
1}

* Now solve
2*B =atoforce
the other branch
e x =1, y = 2
IS one solution

[2*B !=q]
end

16

int double (int v) {
2"d example return 2%v;

2"d jteration x=1, y=2 }
void testme (int x, int y) {

' [true] I z = double (y);
Xx=a=1ly=p=2 if (z == x) {
| if (x > y+10) {
[true])
' =2%p=4 I ERROR ;
1}

* Now solve
2*B —a&

' a <= B+10
' [2*?..!”] l to fochethe
other branch
' ' « x = 30;
[2*B =a&a > B+ 10] [2*B =a & v = 15 is
one solution

UW CSE P504 17

2hd example
3nd jiteration x=30, y=15

[true]
l x:a:%w:B:15\
|

[true]

int double (int v) {
return 2*v;
}
void testme (int x,
z = double (y);
if (z x) {
if (x > y+10) {
ERROR;
}}h}

int y) {

z:Z*B—BO
e Now solve
' [true] | 2*'3 = o &
a <= pf+10
2*B =
0[L>7 o l 275 1=al \ to force the
30>? 15+1o other branch

[2*B =a&a > B+ 10]
[30 =30 & 30 > 25]

error

[2*B =a&a <= B+

10]

x = 30; y =
15 IS one
solution

UW CSE P504

18

Three concrete test cases

int double (int v){ return 2*v;}
void testme (int x, int y) {
z = double (y):
if (z == x) {
if (x > y+10) {
ERROR;

}

UW CSE P504

x y

22 7 Takes first else
2 1 Takes first then and second else
30 15 Takes first and second then

19

Concolic testing example: P. Saglam

Random seed
-x = -3,y =17
Concrete

-z =9
Symbolic

-z = x343x%49

Take then branch

with constraint
x34+43x%49 =y

UW CSE P504

void test me(int x,int y) {
z = xX*x*x + 3*x*x + 9;
if(z !'= y){
printf ("Good branch”) ;
} else {
printf ("Bad branch”);
abort () ;

}

« Take else branch

with constraint
x34+43x°4+9 = y

20

Concolic testing example: P. Saglam

o Solving iS hard fOF void test me(int x,int y) {
x34+3x%249 = y z = x*x*x + 3*x*x + 9;
; if(z !'= y){
* So use z’s concrete value, printf (“Good branch”) ;
which is currently 9, and } else {
continue concretely printf (“Bad branch”) ;
« 9 = 7 sothen is good abort () ;
« Symbolically solve 9 = y \ }

for else clause

« Execute next run with « When symbolic expression
x=-3; y=29 becomes unmanageable
So else is bad (e.g., non-linear) replace it

by concrete value
UW CSE P504 21

Concolic testing example: P. Saglam

« Random

— Random memory
graph reachable from

P
— Random value for x

— Probability of reaching
abort() IS extremely

low
* (Why s this a
somewhat misleading
motivation?)

UW CSE P504

typedef struct cell {
int v;
struct cell *next;
} cell;
int £(int v) {
return 2*v + 1;
}
int testme(cell *p, int x) {
if (x > 0)
if (p != NULL)
if (£(x) == p->v)
if (p->next == p)
abort () ;
return O;

}

22

Let's try it

typedef struct cell {

int v;

struct cell *next;
} cell;
int f(int v) {

return 2*v + 1;
}
int testme(cell *p, int x) {

if (x > 0)

if (p 1= NULL)
if (f(x) == p->v)
if (p->next == p)
abort();

return 0;

}

UW CSE P504

Concrete

p=NULL;
x=236

Symbolic

Constraints

23

Let's try it

typedef struct cell {

int v;

struct cell *next;
} cell;
int f(int v) {

return 2*v + 1;
}
int testme(cell *p, int x) {

if (x > 0)

if (p 1= NULL)
if (f(x) == p->v)
if (p->next == p)
abort();

return 0;

}

UW CSE P504

Concrete

p=[634,NULL] ;
x=236

Symbolic

Constraints

24

Let's try it

typedef struct cell {

int v;

struct cell *next;
} cell;
int f(int v) {

return 2*v + 1;
}
int testme(cell *p, int x) {

if (x > 0)

if (p 1= NULL)
if (f(x) == p->v)
if (p->next == p)
abort();

return 0;

}

UW CSE P504

Concrete

x=1

p=[3,pl;

Symbolic

Constraints

25

Let's try it

typedef struct cell {

int v;

struct cell *next;
} cell;
int f(int v) {

return 2*v + 1;
}
int testme(cell *p, int x) {

if (x > 0)

if (p 1= NULL)
if (f(x) == p->v)
if (p->next == p)
abort();

return 0;

}

UW CSE P504

Concrete

Symbolic

Constraints

26

Concolic: status

« The jury is still out on concolic testing — but it surely
has potential

« There are many papers on the general topic

« Here’s one that is somewhat high-level Microsoft-
oriented

— Godefroid et al. Automating Software Testing
Using Program Analysis IEEE Software (Sep/Oct
2008)

— They tend to call the approach DART — Dynamic
Automated Random Testing

UW CSE P504 27

http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ieeesw2008.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ieeesw2008.pdf

From P. Godefroid

DART Implementations

Defined by symbolic execution, constraint generation and solving
- Languages: C, Java, x86, .NET,_..
- Theories: linear arith., bit-vectors, arrays, uninterpreted functions,...
- Solvers: lp_solve, CVCLite, STP, Disolver, Z3,...

Examples of tools/systems implementing DART:
- EXE/EGT (Stanford): independent ['05-'06] closely related work
- CUTE = same as first DART implementation done at Bell Labs

- SAGE (CSE/MSR) for x86 binaries and merges it with "fuzz" testing for finding
security bugs (more later)

- PEX (MSR) for .NET binaries in conjunction with “parameterized-unit tests” for
unit testing of .NET programs

- Y061 (MSR%A or checking the feasibility of program paths generated statically
using a SLAM-like tool

- Vigilante (MSR) for generating worm filters

- BitScope (CMU/Berkeley) for malware analysis

- CatchConv (Berkeley) focus on integer overflows

- Splat (UCLA) focus on fast detection of buffer overflows

- Apollo (MIT) for testing web applications ..and morel

LW Seminar Page 13 Movember 2009

UW CSE P504

28

My take

« The real story is the combination of symbolic evaluation,
model checking, automated theorem proving, concrete
testing, etc.

« These are being used and combined in ways that were
previously not considered and/or were previously
Infeasible

* One other point: few if any of these systems actually help
produce test suites with oracles — they rather help
produce sets of test inputs that provide some kind of
structural coverage

« This is fine, but it is not the full testing story — making sure
the program computes what is wanted is also crucial

UW CSE P504 29

An aside: sources of unsoundness

« Matt Dwyer and colleagues have observed that in
any form of analyzing a program (including analysis,
testing, proving, ...) there is a degree of
unsoundness

« How do we know that

— every desired property (correctness, performance,
reliability, security, usability, ...) is achieved in

— every possible execution?

e We don’t — so we need to know what we know, and
what we don’t know

UW CSE P504 30

Sample across executions

Requirements

Behaviors

UW CSE P504

31

Sample across reguirements

Deadlock

Data structure invariants

Requirements

Freedom from races

Behaviors

UW CSE P504

32

Continuous testing: Ernst et al.

* Run regression tests on every keystroke/save,
providing rapid feedback about test failures as source

code is edited

* Objectives: reduce the time and energy required to
keep code well-tested, and prevent regression errors
from persisting uncaught for long periods of time

UW CSE P504 33

Key results include

« Developers using continuous testing were three times
more likely to complete the task before the deadline
than those without (in a controlled experiment)

* Most participants found continuous testing to be
useful and believed that it helped them write better
code faster, and 90% would recommend the tool to
others.

« Experimental supporting evidence that reducing the
time between the introduction of an error and its
discovery by a developer can lead to improvements
In overall development time.

UW CSE P504 34

Test factoring

« “Expensive” tests (taking a long time to run, most
often) are hard to handle “continuously” when they
begin to fall

« Test factoring, given a large test, produces one or
more smaller tests

« Each of these smaller tests is unlikely to fail unless
the large test fails, and likely to regress (start to fail)
when the large test regresses due to a particular kind
of program change.

UW CSE P504 35

More detalils...

« Clever engineering, clever evaluation, and more

http://www.cs.washington.edu/homes/mernst/research/#Testing

(including continuous testing — old page at MIT)

UW CSE P504 36

http://www.cs.washington.edu/homes/mernst/research/
http://www.cs.washington.edu/homes/mernst/research/
http://groups.csail.mit.edu/pag/continuoustesting/

Carving differential unit test cases from system
test cases: Elbaum et al. FSE TSE

 Unit test cases are focused and efficient

« System tests are effective at exercising complex usage
patterns

 Differential unit tests (DUT) are a hybrid of unit and
system tests that exploits their strengths

« DUTs are generated by carving the system components,
while executing a system test case, that influence the
behavior of the target unit, and then re-assembling those
components so that the unit can be exercised as it was by
the system test

« Architecture, framework, implementation and empirical
assessment of carving and replaying DUTs on three
software artifacts

UW CSE P504 37

http://doi.acm.org/10.1145/1181775.1181806
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.103

From FSE paper

Given st { input/s, expected output's }

Carve ct,,, Execute st, input - S = _..5‘_}_.. K e cutout
ﬂ LT S T — cantue. |

mevolvessm+A=m"

r- r
J:L load —+{ Sy [M [S|
=i) -
Replay ct,,,on m’ < Speet @ Behaviorof m=m
k]
L
A has affected behavior of m
b

Figure 1: Carving and replay process.

“The Carving project is now a part of the new, bigger, and more

ambitious T2T: Test-to-Test Transformation Project”

UW CSE P504

38

http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay
http://esquared.unl.edu/wikka.php?wakka=TestCarvingReplay

Speculation: again

« Continuous testing — In essence, trying to keep
everything as up-to-date as possible

— Using cycles for quality (not primarily for
performance)
« Same two speculation slides, same motivation

« What if we had infinite cycles for quality and could
provide up-to-date information about a set of possible
actions?

— This would also provide instantaneous transition to
a new program state once an action was selected

Discussion

UW CSE P504 39

Speculation: ongoing research @ UW

package com.metamolecular.chemwriter.model;

public class Molecule

a { private List] atoms; (RS
} “~ Import ‘List' (com.sun.xml.internal.bind.{ A A

“~ Import 'List' (java.awt) A r

“~ Import "List' (java.util) V| 2o | O®

© Create class 'List’ V| o2 |O®

O Create interface 'List’ Vie|v

@ Change to 'LCONST' (com.sun.org.apachf A | V | A

@ Changeto ‘Line' (javax.sound.sampled) | A | V | ¥

@ Change to 'Link' (sun.éﬁ:iﬂmagé:lﬁrﬁagew A|lO|Y

@ Change to 'ListDV' (com.sun.org.apache|l A | ® | A

» .)

Figure 1: Mockup of the user interface for displaying contingent validation results.
Modified from http://depth-first.com/articles/2008/01/1 I/my-favorite-eclipse-shortcut-quick-fix (€ 2006-2007 Richard 1. Apodaca. Original content licensed under the Creative Commons
Attribution-Share Alike 3.0 United States License.

UW CSE P504 40

Speculation over merging?

¥ 1 F ¥ ¥ |
| = = /B ==
L WA/
e | s
lmﬂi{ \Hﬂ.‘. Ill:l-il'li in H‘.l1l.|‘-
lﬁul'tlrllir-g m;-.unu-nl .u-ullnl.ln;-rg T —
\EW"..‘II."/ Ill:l-il'lilnﬁ iﬂﬂ-.l'll..ﬂ
Alat Fainbary .u-ullnl.ln;-rg T ——
ll.'.Tiﬂ ﬂ'r"li“ ll-l-‘.lﬂ:ﬁi

UW CSE P504 41

LSDiff (M. Kim et al.):
Help answer questions like ...

Did Steve implement There’s a merge
the intended changes ||conflict. What did
correctly? Sally change?

Check-in comment
(revision 429 of carol open source project)

Easier to extend/maintain/fix”

“Common methods go in an abstract class.

What changed?

UW CSE P504

42

http://users.ece.utexas.edu/~miryung/

What changed?

Was it really an
extract superclass
refactoring? Was

File Name Status #Lines any part of the
DummyRegistry New 20 refactoring
AbsRegistry New 133 mriﬁzsiig?ar?;dotsﬁg\r/e
JRMPRegistry Modified 123 changes?
JeremieRegistry Modified 52 |
JacORBCosNaming Modified 133

IIOPCosNaming Modified 50 Q

CmiRegistry Modified | 39| ()

NameService Modified | 197|C

NameServiceManager |Modified 15|

Changed code: 9 files, 723 lines

UW CSE P504

43

Try diff

File Name Status #Lines
DummyRegistry New 20
AbsRegistry New 133
JRMPRegistry Modified 123
JeremieRegistry Modified 52
JacORBCosNaming Modified 133
IIOPCosNaming Modified 50
CmiRegistry Modified 39
NameService Modified 197
NameServiceManager |Modified 15

Changed code: 9 files, 723 lines

UW CSE P504

44

Try diff

File Name Status #Lines

DummyRegistry |Nem1 | 20|

NameServiceManager|M0dmed| 15|

Changed code: 9 files, 723 lines

UW CSE P504 45

Related diff-like approaches

« Syntactic Diff (Cdiff), Semantic Diff, Jdiff, BMAT,
Eclipse diff, UMLdIff, Change Distiller, ...

« They individually compare code elements at specific
granularities using various similarity measures

— Code elements may be lines, abstract syntax
trees, control flow graphs, etc.

— Similarity is usually based on names and structure

« These tools provide information that is accurate and
useful but not well-suited to helping engineers and
managers answer the kinds of questions we want

UW CSE P504 46

Use systematic change

« Existing diff-based tools do not exploit the fact that
programmers often make high-level changes in part
by systematically applying lower-level changes

« Systematic changes are widespread; examples
Include

— Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

— API update [Chow & Notkin 96, Henkel & Diwan 05, Dig &
Johnson 05...]

— Crosscutting concerns [Kiczales et. al. 97, Tarr et. al.
99, Griswold 01...]

— Consistent updates on code clones [Miller & Myers
02, Toomim et. al. 04, Kim et. al. 05, ...]

UW CSE P504 47

Limitations of diff-based approaches

« These approaches do not group related changes with
respect to a high-level change — but rather by
structural program units such as files

 In part because of this first limitation, they do not
make it easy to identify incomplete or missed parts of
high-level changes

« They leave it to the programmer to discover any
useful contextual information surrounding the low-
level changes

 In other words, these approaches are program-
centric but not change-centric

UW CSE P504 48

Ex: No change-based grouping

[
P
0
‘M
d
$
O
>
O
B

* The programmer must determine that the same
changes have been made in these three related
classes — if they even choose to think about this

UW CSE P504 49

Ex: Hard to see missed changed

Wart() ;

[
P
0
‘M
d
$
O
>
O
B

* The programmer must decide to look for a missing or
Inconsistent change — there is no help from the tool

UW CSE P504 50

Ex: Lack of contextual information

s N
class Car

run () {

}

- J

« Three subclasses of a class changed in the same

way would not be identified by the tools themselves
UW CSE P504 ol

The Logical Structural Diff Approach

« LSDiff computes structural differences between two
versions using logic rules and facts

« Each rule represents a group of transformations that
share similar structural characteristics — a systematic
change

« QOur inference algorithm automatically discovers
these rules

UW CSE P504 52

conciseness

esel - NNE

esel jo

esel - v30A0],

LSD
Rule

53

UW CSE P504

Explicit exceptions

LSD
Rule

©
~
[
©
|
(1)
P
O
e
(o)
EH

UW CSE P504

o4

Additional context

~ N
class Car

r'
92
O

)

b

run () 1 J

same rule

}

_ J

,24
D

)

UW CSE P504 55

Program representation

We abstract Java
programs at the level of
code elements and
structural dependencies

Predicates represent
package, type, method,
field, sub-typing,
overriding, method
calls, field accesses
and containment
relationships

UW CSE P504

VV YV V VYV VY VYV Y VY

package

type

method

field

return
fieldoftype
typeintype
accesses

calls

subtype
inheritedfield
inheritedmethod

56

Fact-based representation

* Analyze a program’s abstract syntax tree and return
a fact-base of these predicates (using JQuery [Jensen

& DeVolder 03])

* Repeat for the modified program

type ("Bus”,..)

method (“"'Bus.start”,”start”,”Bus”)
access (“Key.on” ,”Bus.start”)
method (“Key.out”,”out”,”Key”) . ..

type (YBus”,..)
method (Y'Bus.start”,”start”,”Bus”)
calls(“Bus.start”,”log”)

methodfHEey . output” , “output” , "Key”) . ..

Old program
FB,
past

New program
FB,
Current_ 57

Compute AFB = FB, - FB,

deleted access(“"Key.on”,”Bus.start”)
added calls(“"Bus.start”,”log”)

deleted method(“Key.out”,6 “out”, "Key”)
added method (“Key.output”, “output”, "Key”)

UW CSE P504

58

LSDiff Rule Quantification

* Rules represent systematic structural differences that
relates groups of facts from the three fact-bases —
FB,, FB,, AFB

« Universally quantified variables allow rules to
represent a group of similar facts at once

— For example, VmVt method (m,”setHost”,t)
refers to all methods named setHost in all types

— EX: Vt subtype (“Service”, t)
— EX: Vm calls(m, “SQL.exec”)

UW CSE P504 59

LSD Rules

* Rules are Horn clauses where a conjunction of logic
literals implies a single consequent literal

e Vm Vt method(m, “setHost”, t) A
subtype (“'Service”, t)
= calls(m, “SQL.exec”)

UW CSE P504

60

Rules across versions

* Vm Vt past method(m, “setHost”, t) A
past subtype (“Service”, t)
= deleted calls(m, “SQL.exec”)

UW CSE P504

61

Rules note exceptions

* Vm Vt past method(m, “setHost”, t) A
past subtype (“Service”, t)
= deleted calls(m, "“SQL.exec”)
except t="NameSvc”,
m=""NameSvc.setHost”

+ “All setHost methods in Service’s subclasses in the
old version deleted calls to SQL . exec except the
setHost method in the NameSvc class.”

« A parameter defines when exceptions are found and
reported

UW CSE P504 62

Algorithm Overview

1. Extract logic facts from
programs and compute
fact-level differences

logic rules 2. Learn rules using a
and facts customized inductive
that explain logic programming
algorithm

structural
differences

3. Select a subset of rules
and then remove the
facts in AFB using the
learned rules

UW CSE P504 63

| earn rules

« Inductive logic programming with a bounded depth search based on
beam search heuristics

* Input parameters determine the validity of a rule

— m: the minimum # of facts a rule must match — enough evidence for
arule?

— a: the minimum accuracy of a rule — enough evidence for an
exception?

— k: the maximum # of literals in an antecedent

— B: the window size for beam search

« A sequential covering algorithm that iteratively finds rules and removes
covered facts

« Generate rules starting with an empty antecedent and adding literals
(e.g., from general to specific)

« Learn partially grounded rules by substituting variables of ungrounded
rules with constants

UW CSE P504 64

| earn rules

R := {} // a set of ungrounded rules
L := {} // a set of wvalid learned rules
D := reduced AFB using default winnowing rules
for each antecedent size, 1 = 0...k
R := extend all rules in R by adding

all possible literals
for each ungrounded rule, r:
for each possible grounded rule g of r:

if (g is wvalid) L:= L U g
R := select the best P rules in R

=D - { facts covered by L }

O
I

UW CSE P504

65

Select rules

« Some rules explain the same set of facts in AFB

« SO0 we use a set cover algorithm to select a subset of
learned rules

 Return the selected rules, remove the facts that those

rules cover, and return any remaining uncovered
facts in AFB

UW CSE P504 66

LSD Example

« To prevent an injection attack, a programmer
replaced all calls to SQL . exec t0o SafeSQL. exec

e LSD infers the following rule

— deleted calls(m,“SQL.exec”) =
added calls(m, “SafeSQL.exec”)

« And another rule we've seen before, suggesting a
deletion was not done

— past_subtype (“Service”, t) A
past method(m, “setHost”, t) =
deleted calls(m, “SQL.exec”)
except t="NameSvc”

UW CSE P504 67

Quantitative evaluation

« How often do individual changes form systematic
change patterns?

— Measure coverage, # of facts in AFB matched by
Inferred rules

 How concisely does LSD describe structural
differences in comparison to existing differencing
approach at the same abstraction level?

— Measure conciseness, AFB / (# rules + # facts)

« How much contextual information does LSD find from
unchanged code fragments?

— Measure the number of facts mentioned by rules

but are not contained in AFB
UW CSE P504 68

Quantitative evaluation [2=0.75 m=3 k=2, p=100

Cover- | Concise- | Context

FB,/FB, AFB | Rule | Fact
age ness facts

3080 15 | 1 3 59 2.3 0

carol

UW CSE P504 69

Quantitative evaluation [2=0.75 m=3 k=2, p=100

FBJFB, | AFB | Rule | Fact Cover- | Concise- | Context
age ness facts
3080 15 1 3 59 2.3 0

—~

0N average; 1970 ,CoOVErage, e

CONCISENESS |rr|0r0v~rr|‘—*n[,

./ additional contextual racts

UW CSE P504 70

Textual Delta vs. LSD

a=0.75, m=3, k=2, 3=100

Textual Delta LSD
Changed|Changed %

Files Lines AL Touched e el

carol 1~ 67 ~ 0~ 1~ 1~ 3~
10 revisions 35 4313 132 19 36 71
dnsjava 1~ 5~ 1~ 2 ~ 0~ 2 ~
29 releases 117 15915 344 100 36 201
| Sdiff 2 ~ 9 ~ 2 ~ 2 ~ 0~ 2 ~
10 versions 11 147 39 9 6 54

UW CSE P§

04

Textual Delta vs. LSD

a=0.75, m=3, k=2, 3=100

Textual Delta

L Sdiff 2~ 9 ~ 2~
10 versions 11 747 39

UW CSE P504

Focus group: e-commerce company

* Pre-screener survey
« Participants: five professional software engineers

— Industry experience ranging from six to over 30
years

— use diff and diff-based version control system daily

— review code changes daily except one who did
weekly

 One hour structured discussion
— Professor Kim worked as the moderator

— There was also a note-taker and the discussion
was audio-taped and transcribed

UW CSE P504 73

Focus Group Hands-On Trial

A e Hand-generated html based on LSD output

SVN check-in message: Common methods go in an abstract class. Easier to extend/maintain/fix
Author: benoif (@ Thu Mar 10 12:21:46 2005 UTC
723 lines of changes across 9 files (2 new files and 7 modified files).

Generated based on LSDiff output.

Inferred Rules

1 (50/50) By this change, six classes inherit many methods from AbsRegistry class.

2 (32/32) By this change, six classes implement NameService interface.

3 (6/8) All methods that are included in JacORBCosNaming class and NameService interface
are deleted except start and stop methods.

4 (5/6) All host fields in the classes that implement NameService interface got deleted except
LmiRegistry class.

5 (5/6) All port fields in the classes that implement NameService interface got deleted except
LmiRegistry class.

6 (5/6) All getHost methods in the classes that implement NameService interface got deleted
except LmiRegistry class.

http://users.ece.utexas.edu/~miryung/LSDiff/carol429-430.htm
UW CSE P504 74

46: public class IIOPCosNaming extends AbsRegistry implements NameService {

47:

48: [x*

49: * Default port number (12350 for default)

502 */

All DEFAULT PORT NUMBER fields are added fields except JacORBCosNaming class.
51: private static final int DEEAULPORT DEFAULT PORT NUMBER = 12350;
521

53: [**

54; * Sleep time to wait

55: *x/

56: private static final int SLEEP TIME = 2000;

57:

58: [**

L

604 %/

All port fields in the classes that implement NameService interface got deleted except LmiRegistry class.
é gl

63, [

654 %/

All host fields in the classes that implement NameService interface got deleted except LmiRegistry class.

b —prrvate Shranghost—nuldls

UW CSE P504 75

Focus Group Comments (some)

* “You can't infer the intent of a programmer, but this
IS pretty close.”

« “This ‘except’ thing is great!”
* “You can start with the summary of changes and dive
down to details using a tool like diff.”

UW CSE P504 76

Focus group comments (more)

« “This looks great for big architectural changes, but |
wonder what it would give you if you had lots of
random changes.”

« “This wouldn’t be used if you were just working with
one file.”

« “This will look for relationships that do not exist.”

« Unsurprising comments as we focus on recovering
systematic changes rather than heterogeneous
changes

« When the delta is small, diff should works fine

UW CSE P504 I

LSDIff plug-in for Eclipse

« And some other projects related to summarizing
changes as rules

UW CSE P504

78

http://www.cs.utexas.edu/~alexloh/lsdiff/
http://www.cs.utexas.edu/~alexloh/lsdiff/
http://www.cs.utexas.edu/~alexloh/lsdiff/
http://www.cs.utexas.edu/~alexloh/lsdiff/
http://www.cs.utexas.edu/~alexloh/lsdiff/

Languages and tools
Tools and languages

« The line between programming languages and tools
(programs that help programmers write programs) is
sometimes fuzzy

« Examples
- lint vs. type systems

UW CSE P504

79

Summarization

Reflexion Model Viewer

Statistics:) . fo o

Nodes: & .
Convergences: 3 | Window | 236 08
Divergences: 11 2

* e.g., software reflexion models

UW CSE P504

80

Summarization...

« A map file specifies the correspondence between
parts of the source model and parts of the high-level
model

[£1ile=HTTCP mapTo=TCPIP]
[£file="SGML mapTo=HTML]

[function=socket mapTo=TCPIP]
[file=accept mapTo=TCPIP]
[£file=cci mapTo=TCPIP]
[function=connect mapTo=TCPIP]
[£file=Xm mapTo=Window]
[£ile="HT mapTo=HTML]

[

function=.* mapTo=GUI]

UW CSE P504

Summarization...

E| Reflexion Model Tool

Hile High- Lewvel Model Source Model Mapping Reflexion Model Help

[#] Reflexion Model Viewer

Directory: tutarial
High- Level Model: mogaic.hlm
Source Model: cia.sm
Mapping File: masaic.magp
Language: ﬂ

Annotations File:

Tags File:

- Statistcs:

MNodes: 5
Convergences: 3
Divergences: 11

E|P|rc Information
%] Source Relation

Walues Mapped to <TCPIP» and <windowsr
file function file function

AmxAddCal ThackToText
¥mxSetUnigid
Hm=MakeInfoDialog
Hm=MakeToggleButton
HrmzMakeInfobialog

cciBindings2.
cciBindings2.

¢ MoDisplayCCIWindow Hems.
< MoDisplayCCIWindow Hemx.
coiBindings2. ¢ MoCCIWindowCallBack Hmw.
cciBindingsz. ¢ MoDisplayCCIWindow Hmx.
cCiBindings2. c MoCCIStartlistening Hmsx.

<

<

4

<

cCiBindings2. < MoDisplayCCIWHindow Hmx. HrxMake Form
cciBindings2. < MoDisplayCCIWindow Hmx. imxMakeFormAndThreeButtons
cciBindings2. ¢ MoDisplayCCIWindow Hmx. ¥mxManageRemanage

e e R e I e B A A B a W]

coiBindings2. ¢ MoCCIWindowCallBack Hms.

| ¥ = 1

Dismiss | Save To File... |

¥meExtractUnigid

UW CSE P504

Summarization...

« Condense (some or all) information in terms of a
high-level view quickly
— In contrast to visualization and reverse
engineering, produce an “approximate” view
— lteration can be used to move towards a “precise’
view
« Some evidence that it scales effectively

« May be difficult to assess the degree of
approximation

H

UW CSE P504 83

Case study: A task on Excel

* A series of approximate tools were used by a
Microsoft engineer to perform an experimental
reengineering task on Excel

 The task involved the identification and extraction of
components from Excel

« Excel (then) comprised about 1.2 million lines of C
source

— About 15,000 functions spread over ~400 files

UW CSE P504 84

The process used

N N
odel

UW CSE P504

| |
xtraction \ b
L !i k Source
SLE Model

85

An Initial Reflexion Model

« The initial Reflexion
Model computed had 15
convergences, 83,
divergences, and 4
absences

e It summarized 61% of
calls in source model

UW CSE P504 86

An Iterative process

e Over a 4+ week period
* Investigate an arc
* Refine the map
— Eventually over 1000 entries
« Document exceptions
« Augment the source model
— Eventually, 119,637 interactions

UW CSE P504

87

A refined Reflexion Model

* A later Reflexion Model
summarized 99% of
131,042 call and data
Interactions

« This approximate view of
approximate information
was used to reason
about, plan and
automate portions of the
task

UW CSE P504 88

Results

« Microsoft engineer judged the use of the Reflexion
Model technique successful in helping to understand
the system structure and source code

“Definitely confirmed suspicions about the structure
of Excel. Further, it allowed me to pinpoint the
deviations. It is very easy to ignore stuff that is not
Interesting and thereby focus on the part of Excel that
| want to know more about.” — Microsoft A.B.C.
(anonymous by choice) engineer

UW CSE P504 89

Open guestions

How stable is the mapping as the source code
changes?

What if you don’t have a high-level model?
e How come it's not used much at all?

UW CSE P504 90

Imitation and flattery

UW CSI

Pub. No.:

W0Q/2009/134238 International Application No.: PCT/US2008/013535

Publication Date: 05.11.2009 International Filing Date: 10.12.2008

IPC:
Applicants:

Inventors:

Agent:

Priority Data:
Title:

Abstract:

- PS04

GO6F 9/44 (2008.01)

FRAUNHOFER USA, INC. [US/US]; 44792 Helm Street Plymouth, Ml 48170 (US) (All Except US).
FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNGE.V. [DE/DE];
HansastraBe 27c, 80686 Munchen (DE) (All Except US).

LINDVALL, Mikael [SE/US]; (US) (US Only).

MUTHIG, Dirk [DE/DE]; (DE) (US Only).

COSTA, Patricia [BR/US]; (US) (US Only).

KNODEL, Jens [DE/DE]; (DE) (US Only).

LINDVALL, Mikael; (US).
MUTHIG, Dirk; (DE).
COSTA, Patricia; (US).
KNODEL, Jens; (DE).

SPECHT, Michael, D. et al.; Sterne, Kessler, Goldstein & FoxP.L.L.C. 1100 New York Avenue, N.\W.
Washington, DC 20005-3934 (US).

12/112,269 30.04.2008 US

SYSTEMS AND METHODS FOR INFERENCE AND MANAGEMENT OF SOFTWARE CODE
ARCHITECTURES

Systems, computer program products, and methods for extracting,

evaluating, and updating the architecture of a software system are .
provided. In an embodiment, the method operates by defining the |
planned architecture for the system and extracting the implemented o

software code architecture from the source code of the system. The — —

method compares the actual architecture to the planned architecture

defined to identify architectural deviations, and suggested changes to

the architecture are identified based upon the architectural deviations.

The modeled code architecture and defined planned architecture

information enables verification and determination of whether a

software system's source code conforms to the intended structure of ; .1
the system. The code architecture and planned architecture

comparison also enables analysis and display of the effects that changes to source code may have on

the structure of a software system.

91

Questions?

UW CSE P504

92

